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In higher education, accurately forecasting the enroll-
ment rates for individual courses helps the university 
allocate appropriate resources, including the number of 
seats for the course and course sections, assignment of 
classroom or lab space, assignment or hiring of instruc-
tors, assignment of teaching assistants, and management 
of wait-lists, in addition to study of course conflicts 
across a university. Unnecessary administrative costs 
can be incurred when the demand for courses is not 
accurately predicted. If a course is over-enrolled, the 

department must rush to allocate additional space and 
instructors for the additional students. If the course is 
under-enrolled, a class or class sections may be can-
celled, creating challenges for student class schedules 
and instructor work schedules. Both scenarios lead to 
potentially immense stress on students, instructors, and 
administrators, typically at the start of a term.

At San Diego State University (SDSU), the course 
prediction model currently in place is heuristic, relying 
mostly on recent semester enrollments while making 
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adjustments as students enroll in real time. Such prac-
tice serves its purpose in most circumstances, but his-
torically has failed to give accurate predictions in regard 
to courses with high enrollment variance. One of these 
classes is Chemistry 200: General Chemistry, taken by 
students in their first or second years. For a number 
of STEM majors, the course is a core prerequisite for 
further courses in the student program of study. There 
are several factors that may possibly contribute to this 
course having a high variation in its enrollment rate. 
Most noteworthy is the course success rate and number 
of students repeating the course each semester to satisfy 
a major pre-requisite.

The authors first looked at the current commonly 
used methodologies for predicting course enrollment. 
The most prominent methods assume a model of static 
linear growth at the university, i.e. the student popula-
tion is projected to grow a certain percentage annually 
and therefore the course enrollments are increased by a 
proportional amount. Another popular method involves 
a flowchart or conditional probability analysis wherein 
students are placed into category buckets based on per-
ceived characteristics that would impact their likeli-
hood to enroll in a particular course (e.g. freshman vs. 
transfer student). This latter method then identifies the 
proportion of students in each bucket that ultimately 
enroll in the course in question to create a prediction 
for future terms.

Although the literature is limited in research on 
course prediction, a few papers are worthy of mention. 
Kraft and Jarvis (2005) posited a conditional probabil-
ity system of course prediction that achieved a very 
high level of predictive accuracy, reported at approx-
imately a 2 percent error rate in most circumstances 
at Clemson University. This prediction system buck-
ets students into broad demographics such as student 
status upon matriculation and when the student suc-
cessfully meets course prerequisites. The model then 
finds the number, and proportion, of students in each 
bucket at each successive step. The final enrollment 
prediction number is found by running the entire stu-
dent body through conditional enrollment proportions. 
The paper claims that making predictions on a per 

person basis, of whether or not individual students 
would enroll in a particular course, is not viable be-
cause of high variance. Other limitations of this study 
are that a limited number of factors are considered in 
a conditional probability analysis, and the interactions 
between variables are rarely considered. One of the 
deficiencies of the Kraft and Jarvis (2005) conditional 
probability analysis method is that it places students 
into buckets after the actual enrollment was finalized. 
This could lead to much better predictive performance 
when predicting the next year’s enrollment rate be-
cause of year-by-year variability. In a machine learning 
sense, there should be training and testing data split 
for better validation of the flowchart model in the con-
ditional probability analysis; the two percent error rate 
does not represent the true performance of the model. 
In general, machine learning in data science refers to 
the use of computer algorithms to make accurate pre-
dictions of the outcome.

At the University of Virginia, a cohort-based 
method is used (University of Virginia 1999). This 
method, called the Grade Progression Method, sug-
gests that as a cohort of students moves from year to 
year, a certain portion of the students will drop from 
the curriculum of interest, but most of the students 
will enroll in the course of interest in the same year of 
study. Using historical data, it is possible to determine 
what proportion of students will choose to move on 
to other curriculum paths and then, using the cohort 
size of each year, create a prediction of how many stu-
dents in the original cohort will remain and eventually 
enroll in the course of interest. Five years of historical 
data are used to stabilize the prediction number. This 
approach is consistent only when cohorts have a pre-
dictable plan of study from year to year, which most 
often occurs at the graduate level. At San Diego State 
University, such consistent paths are not applicable for 
most majors, particularly at the undergraduate level 
for large enrollment courses with multiple hundreds 
or more students per semester.

The University of California employs a multiple par-
ticipation rate calculation that separates students on the 
basis of ethnicity to find their participation rate, i.e., 
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the proportion of students in that ethnicity that ulti-
mately enroll. A prediction coefficient is created and 
multiplied by the entire student ethnicity population 
in question (University of California 1999). Four years 
of historical data is used in order to stabilize the predic-
tion coefficient. The University of California has found 
that this method is successful for long-range predic-
tions. Unlike either of the two methods cited above, this 
approach uses demographic information in the form of 
ethnicity in order to categorize students into different 
groups that have demonstrated some difference in en-
rollment patterns. However, it has yet to be seen if ad-
ditional demographic information and prior academic 
performance data could be added to this model to create 
a more accurate predictor.

As the effectiveness of prediction methods may vary 
from university to university, this paper begins by re-
producing conditional probability analysis using data 
from SDSU. The authors then propose two tree-based 
models of course prediction that consider historical 
data in the form of student demographic information, 
historical academic performance (i.e., before matric-
ulating to San Diego State University), and current 
academic information such as student standing or de-
clared major. The first model was built using a classifi-
cation and regression tree (CART) algorithm (Breiman, 
et al. 1984) to create a single decision tree. By introduc-
ing additional data in the form of historical student 
information that is known by the university prior to 
students’ registration period, this decision tree aims to 
improve upon the predictive accuracy of pre-existing 
models. The second model is a random forest algo-
rithm (Breiman 2001) that built a forest of decision 
trees and often achieves better prediction via model av-
eraging. The authors aimed to report the most reliable 
prediction results using machine learning techniques 
while considering comprehensive factors that could 
contribute to the variation in the course enrollment 
number. The authors note that Soltys, et al. (2021) pro-
posed a machine learning framework for predicting 
enrollment of applicants to a university. As course en-
rollment requires a different set of features and specific 
considerations with respect to pre-requisite courses 

and student performance at the university, this paper 
compliments Soltys, et al. (2021) well toward successful 
applications of machine learning to solve enrollment 
management problems.

Data
The data used for this study comprised all students 
who enrolled at San Diego State University from 2010 
through 2019. Across the years in question, there were 
approximately 83,000 students who enrolled at SDSU 
who were available as data points for the models. The 
data set contained 45 covariates that described in differ-
ent capacities a student’s academic history and demo-
graphics. This information included gender, disability 
status, SAT scores, first-generation status, minority sta-
tus, and high school GPA, among others (see Appendix 
A, Table 4, on page 24).

The authors split the data into training and test-
ing sets to give an accurate model performance eval-
uation. The authors created models through gaining 
information from training data, and then predicted on 
testing data. For example, to predict the number of en-
rollments in fall 2019, the training data contained the 
information from previous falls, and the testing data 
used the information about fall 2019. So, it is import-
ant to keep training data and testing data of the same 
structure in order to produce accurate predictions. In 
the analysis, the authors created individual data sets 
for each fall semester in order to obtain timely infor-
mation, such as the number of years between the time 
a student graduated from high school and the target 
fall semester and the number of days between a stu-
dent’s completion of the prerequisite for the course 
and when the target fall semester began. For each fall 
semester, the authors curated the data including only 
the students who entered the university within five 
years from that fall semester. This constraint removed 
earlier cohorts that may have had different patterns 
from the current cohorts. Since the authors were cre-
ating models based on the previous three years of data, 
there were three training sets. They took an ensemble 
of the three models created across these three training 
sets to obtain the final model.
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Conditional Probability Analysis
Methods

The authors first recreated the Kraft and Jarvis (2005) 
course enrollment prediction system. As mentioned 
earlier, this prediction system buckets students into 
broad academic backgrounds such as student status 
upon matriculation and whether the student success-
fully meets course prerequisites. The approach then 
creates conditional probabilities using the proportion 
of the students who take the target course in each 
bucket from previous years. Since every university has 
different practices and student bodies, it was import-
ant to make sure that the results derived from this 
flowchart-based analysis at Clemson University had a 
similar level of predictive accuracy at SDSU. This anal-
ysis built upon the Kraft and Jarvis (2005) method by 
first replicating their model using data from San Diego 
State University.

There were a few differences between the original 
analysis and the analysis that is the focus of this paper. 
In the original study, students were separated into three 
different buckets based upon their majors: one of ei-
ther a General Engineering major, a major that needs 
the course in question as a prerequisite for a future 
major course, or other major. The General Engineering 
bucket was needed because of a limitation in their data 
source that made the data concerning General Engi-
neering students inaccurate. The SDSU data did not have 
such a limitation. As such, this conditional probability 
model contained only two buckets for whether or not 
a student needed the course in question as a prereq-
uisite for a future major course. In sum, the method 
grouped students by transfer status, prerequisite met 
term, whether the course is a major prerequisite, and 
whether the students had taken General Chemistry be-
fore. Furthermore, the authors’ analysis had a separate 
layer between major groups and final course enrollment 
that analyzed whether or not a student had failed the 
General Chemistry prerequisite. At Clemson University, 
the course in question did not have any prerequisites 
whereas General Chemistry at SDSU had a prerequisite 
that bars certain students from enrolling in General 

Chemistry otherwise. The detailed structure of the con-
ditional probability analysis is shown in Appendix A, 
Figure 5 (on page 27).

Table 1 (on page 15) shows the percentage of en-
rollment for each student population bucket that fell 
under a particular category, as was previously discussed. 
For example, the first cell of the first row of Table 1 
is the conditional probability of enrollment among 
first-time freshmen who needed General Chemistry 
as their major prerequisite; in other words, 32.79 per-
cent of the students who were first-time freshmen and 
needed General Chemistry as their major prerequisite 
took General Chemistry from fall 2015 to 2017. The 
enrollment prediction using this probability 0.3279 on 
2018 fall data was 303 students. The actual fall 2018 en-
rollment number for first-time freshmen who needed 
General Chemistry as their major prerequisite was 412.

The conditional probabilities were obtained from 
each fall semester over the past three years, and the 
conditional probabilities displayed are an average of the 
three sets of conditional probabilities. The authors also 
made sure that each bucket of students was mutually 
exclusive. For example, in the flow chart, the group of 

“In pre-req two terms ago” did not contain any students 
from the group of “In pre-req last term.”

Results
Table 1 shows the average enrollment rates of each stu-
dent population subgroup from 2015 to 2017 as well 
as the predicted enrollment numbers for fall 2018. 
Through this bucketing method, it became clear that 
the conditional probability analysis did not have the 
same level of accuracy across each of the buckets. Some 
of the subgroups, in particular students in the last 
group who had not passed the prerequisite or taken 
the class in the last two terms, were over-predicted by 
this method (“Other Students” row in Table 1). On the 
flip side, some of the subgroups were under-predicted, 
for example the first subgroup of first-time students 
requiring this course for their major (“First-time” row 
in Table 1).

The largest group of students who enrolled in Gen-
eral Chemistry fell under the category of first-time 
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students who needed the course as a major course pre-
requisite. Table 2 (on page 16) predicts that 313 stu-
dents would enroll in the 2019 fall semester, whereas 
396 students actually enrolled. This analysis showed 
that the overall strategy of bucketing students into dif-
ferent groups depending on individual characteristics 
could be an effective strategy; however, although the 
overall enrollment prediction is 78.8 percent accurate, 
the accuracy for individual groups deviated signifi-
cantly. But the authors also predicted the 2018 fall en-
rollment rate using 2015–2017 data, and the accuracy 
was better. The actual enrollment number was 650 for 
fall 2018, but the authors predicted only 627 based on 
the flowchart method (see Table 1), an error rate of 3.6 
percent. These illustrations show that the year-to-year 

variation in General Chemistry enrollment could cre-
ate predication accuracy challenges for the conditional 
probability analysis.

The primary drawback to the conditional probability 
analysis method is that it uses only limited academic 
information. The inclusion of demographic information 
and even academic performance information prior to 
college may allow for adjustment to the model. The 
flowchart groupings are also rather subjective based 
upon the analyst’s perceived notions of what back-
ground differences would affect likelihood to enroll. In 
particular, by introducing a tree-based model, the au-
thors aimed to overcome these drawbacks and create a 
statistically defensible strategy to identify which groups 
of students have differing likelihoods of enrolling in 

 TABLE 1 ➤ Conditional Probability Analysis:  
Conditional Enrollment Rates for Predicting Fall 2018

Condition(s)
Predicted 

Enrollment 
Rate (%)1

Fall 2018
Prediction

Fall 2018
Actual (n)

New Students

First-Time and Met Prerequisite
Major Prerequisite 32.79 303.33 412

Everyone Else 22.33 22.33 25

Transfer and Met Prerequisite
Major Prerequisite 31.13 5.29 5

Everyone Else 32.92 10.20 10

Continuing Students

Passed Prerequisite Last Term
Major Prerequisite 35.00 40.97 71

Everyone Else 48.48 40.73 62

Passed Prerequisite Two Terms Ago
Major Prerequisite 12.75 7.90 6

Everyone Else 10.43 2.60 4

In Course Last Term

Major Prerequisite
Passed 4.22 17.94 5

Failed 20.07 5.02 3

Everyone Else
Passed 2.89 3.55 2

Failed 18.16 0.55 0

In Course Two Terms Ago

Major Prerequisite
Passed 1.20 3.50 3

Failed 4.00 0.92 1

Everyone Else
Passed 0 0 1

Failed 0 0 1

Other Students All 5.00 162.00 37

Overall 627.07 650

1 Average of previous three Fall term enrollment rates (actual) used for calculating current Fall enrollment prediction.
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General Chemistry. The Kraft and Jarvis (2005) con-
ditional probability analysis provided a good starting 
point from which, as explained in the next section, the 
authors improved through a tree-based approach for 
more optimal splits between student groups.

Classification Tree Analysis
Methods
A decision tree is a flowchart-like structure in which: 
each internal node represents a “test” on an attribute 
(e.g., whether a coin flip comes up heads or tails); each 
branch represents the outcome of the test; and each 
leaf node represents a class label (decision taken after 
computing all attributes) (Wikipedia: The Free Ency-
clopedia 2020). An example of a decision tree is shown 
in Figure 1 (on page 19). The root, or top-most, node 

splits students as to whether the date their prerequi-
site was fulfilled is at least 37 days after matriculation 
(send student to the left) or less than 37 days after ma-
triculation (send student to the right). Internal nodes 
below the root node in the decision tree are similarly 
characterized by decision rules that send students down 
the tree to the left or the right. All branches end in so-
called terminal nodes where students are collected. In 
Figure 1, the terminal nodes do not have a split rule, but 
instead present the number of students who end up in 
the terminal node (bottom number) and the probability 
a student in that node enrolls in the General Chemistry 
course (top number). For example, the first terminal 
node in Figure 1 (at the left most bottom end of the tree) 
shows that 90 percent of the students met their pre-
requisite more than 37 days after the term started, in-
cluding those students who never met the prerequisite. 

 TABLE 2 ➤ Conditional Probability Analysis:  
Conditional Enrollment Rates for Predicting Fall 2019

Condition(s)
Predicted 

Enrollment 
Rate (%)1

Fall 2019
Prediction

Fall 2019
Actual (n)

New Students

First-Time
Major Prerequisite 35.47 62.8 157

Everyone Else 12.98 1.7 11

Transfer
Major Prerequisite 27.98 2.5 6

Everyone Else 35.62 2.9 4

Continuing Students

Passed Prerequisite Last Term
Major Prerequisite 44.92 53.0 75

Everyone Else 55.38 48.7 60

Passed Prerequisite Two Terms Ago
Major Prerequisite 11.06 6.3 9

Everyone Else 11.60 2.6 2

In Course Last Term
Major Prerequisite

Passed 2.70 9.7 17

Failed 17.11 7.9 7

Everyone Else
Passed 1.94 2.4 2
Failed 11.71 1.4 1

In Course Two Terms Ago
Major Prerequisite

Passed 1.17 5.5 2

Failed 3.53 1.2 0

Everyone Else
Passed 0.34 0.4 0
Failed 5.55 0.2 0

Other Students All 3.35 102.8 43

Overall 313.0 396

1 Average of previous three Fall term enrollment rates (actual) used for calculating current Fall enrollment prediction.
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The terminal node shows that there was a probability 
of 0.0000031 for those students to enroll in the General 
Chemistry course. Note that students who fulfilled the 
pre-requisite at least 37 days after the semester began 
were sent from the root node to this first terminal node. 
The students who fulfilled their prerequisite 75 days be-
fore the term started were sent to the second terminal 
(from the left) in Figure 1 (on page 19).

Note that the conditional probability analysis also 
produces a decision tree. But the flowchart therein was 
created by the authors’ intuition without validating if 
the splits were data informed. In particular, the authors 
needed machine learning algorithms to help identify 
the best tree splits. The authors incorporated supervised 
learning methods using an algorithm to predict the tar-
get variable (here enrollment status).

Classification and regression tree (CART) operates 
by recursively splitting the sample space in such a way 
that each split increases the purity of the resulting two 
spaces ( James, et al. 2013). Purity can be measured in 
a number of different ways; for the purposes of this 
analysis, the Gini index is used:

 EQUATION 1.
K

Gini Index = 1 −∑ pk
2 

k =1
Where:

K = number of classes and
pk = probability of an object being 

classified to a specific class

For our analysis K= 2, with the two classes being en-
rolled and unenrolled. The Gini index ranges from zero to 
one with smaller values signifying purer nodes. For ex-
ample, a node containing observations with only one 
category/class would have a Gini index value of zero. 
The best split is defined as the one that reaches the max-
imum reduction in Gini index between the parent node 
and the average of the two child nodes, weighted by the 
proportion of observations sent to the two child nodes.

With this method of recursive splitting, the purity 
of the resulting leaf nodes would always increase to 
some extent, and this may lead to overfitting in the 

resulting model. To this end, CART employs a prun-
ing process based on a cost-complexity measure, which 
consists of the level of misclassification at each ter-
minal node and a penalty term that increases as the 
tree gets larger. Using the cost-complexity measure, 
the tree is then pruned such that the resulting tree 
is the best taking into account both the overall fit and 
tree complexity. For the authors’ analysis, pruning was 
not the best approach because of the imbalance in the 
data. Only approximately 500 students per semester 
were enrolled in General Chemistry out of a total of 
approximately 400,000 students in the data set. In such 
a scenario, the splitting algorithm would select the ma-
jority class in most scenarios, as simply defaulting to 
the majority class without a single split would yield an 
approximately 98 percent accuracy. This would produce 
a predictively accurate but ultimately impractical and 
unusable tree. Instead of pruning, this analysis used a 
minimum number of observations for each leaf node 
as a stopping rule.

The authors coded the algorithm in R and used the 
R package rpart (Therneau, Atkinson, and Ripley 2019) 
for this classification tree analysis. They used the rpart 
package default value for the minimum number of ob-
servations in a node, which is 20. This stopping rule 
stops splitting if a node does not contain at least 20 
observations, preventing the model from overfitting on 
nodes with few observations.

In a CART model, each observation is run down the 
tree and through each respective split until it finally 
reaches a terminal node, where it is classified into one 
of two possible classes, in this case either enrolling in 
General Chemistry or not. The authors’ final prediction 
took the proportion of positive cases (in the training 
data from prior years) in each terminal node and mul-
tiplied those proportions by the number of students (in 
the new data from the year to be predicted) that ended 
up in each respective terminal node to arrive at the pre-
dicted enrollment in General Chemistry. Again, like the 
flowchart method, the authors created training data by 
year, but instead of using the variables of prerequisite 
met date, they used the number of days from the ma-
triculation period. The authors also divided the model 
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training process into sets based on the number of prior 
cohorts. For example, in the analysis, to predict 2018 
enrollment, the authors trained the model separately on 
2015, 2016, and 2017 data. The final enrollment predic-
tion was then an ensemble average of these three trees 
fit for each prior year.

The proposed tree-based algorithm utilized individ-
ual observations to predict the chance that a student 
would enroll in a course, aggregated those predictions, 
and used that aggregation as a prediction for overall 
course enrollment. Instead of using a traditional predic-
tion methodology where new observations are individ-
ually run down the tree and given a binary indicator of 
whether or not they fall in a class, SDSU’s model sum-
marized the tree terminal nodes as proportions, counted 
how many observations from the prediction year fell in 
to each terminal node, and then multiplied this count 
for each terminal node by its respective proportion in 
order to arrive at a final prediction number. In contrast 
to the flowchart method, which only takes into con-
sideration limited student academic information at the 
time of enrollment, tree-based methods are capable of 
considering a much wider variety of data. In this study, 
the tree-based methods used demographic information, 
academic performance prior to entering university, as 
well as other covariates (see Appendix A, Table 4, on 
page 24) in order to create a more holistic system of 
prediction for course enrollment.

Results
The decision trees trained from fall 2017 and fall 2018 
can be seen in Figures 1 (on page 19) and 2 (on page 
20). Each node shows the number of students in the 
node (bottom number) and the probability they would 
enroll in the General Chemistry course (top number). 
Other than the terminal nodes, below each node is the 
splitting rule characterized by the variable and thresh-
old for sending students down the tree to the left or 
right. The decision tree trained from different years’ 
data was slightly different, but the main factors that the 
trees considered were similar: student academic stand-
ing, if and when the student had previously taken Gen-
eral Chemistry, and how many days before the target 

semester the student met the prerequisites for General 
Chemistry being the major determinants of enrollment 
probability. SAT comprehensive score, high school grad-
uation year, and entry term also appeared as split rules 
in the trees. The detailed structures of the trees trained 
from fall 2015 and fall 2016 are shown in Appendix A, 
Figures 6 and 7 (on pages 27 and 28). The decision 
tree method found that recent high school graduates 
are more likely than others to enroll in General Chem-
istry. The variable abbreviations shown in the decision 
tree outputs can be referenced in Appendix A, Table 4 
(on page 24). The decision tree method predicted 
335 students would enroll for fall 2019, the actual value 
being 396 students enrolled. The decision tree error 
rate for fall 2019 was 15.5 percent, which was a slight 
improvement compared to the error rate of 21.2 percent 
for the conditional probability analysis. Similarly, the 
decision tree error rate was smaller when predicting 
fall 2018. The decision tree method predicted that 656 
students would have taken General Chemistry, com-
pared to the actual enrollment of 650 students, resulting 
in an error rate of 0.8 percent.

The decision tree-based method was more accurate 
than the original flowchart-based method. The final 
predictions and associated error rates can be seen in 
Table 3 (on page 21). The most likely reason behind 
the improvement was the introduction of demographic 
information and academic performance prior to enroll-
ing at SDSU. In this way, the decision tree was able to 
use all available information to build a better predictive 
model of the conditional probabilities.

Random Forest Analysis
Methods
Random forest is a popular machine learning algorithm 
that uses decision trees in an ensemble fashion to im-
prove predictive accuracy. As a further step in the anal-
ysis, a random forest algorithm was implemented to 
investigate its predictive capabilities in this situation.

In much the same way that CART increases the level 
of model complexity compared to a conditional proba-
bility analysis, random forest builds upon the complex-
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ity found in CART by using an aggregate of multiple 
decision trees instead of a single decision tree. The algo-
rithm takes an ensemble average of the results from the 
multiple trees in the forest of trees in order to form a 
final prediction. In contrast to the tree building method 
utilized by CART, which attempts to utilize all possible 
information at every step, random forest randomizes 
the model building process in a number of ways in 
order to produce a set of varied individual trees.

First, instead of using the entire sample to grow a 
tree, random forest uses only a random subset of the 
original data in a process called bagging: given an origi-
nal sample size n, a training set is produced by randomly 
sampling with replacement from the original sample 

n times. Second, at each node split, random forest ran-
domly samples from the feature space. Recall that CART, 
on the other hand, considers every possible predictor 
to determine the split rule for a given node. A recom-
mended default number of predictors (termed “mtry”), 
which the authors used in their analysis, is the square 
root of the number of predictors (Breiman 2001). Third, 
random forest does not include a pruning step. The idea 
is to grow a forest of over-fit trees. But by randomly 
choosing the sample for each tree and the predictors 
over which to split at each node, the authors produced 
a diverse set of trees over which an ensemble predic-
tion may perform, potentially much better than a single 
decision tree.

 FIGURE 1 ➤ Classification Tree Analysis: Decision Tree Trained From 2017 Data
* SATCC = SAT_CompConv; ** ET = EntryTerm
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The stopping criteria of each tree is that the samples 
in the node have the same responses, have the same 
features, or meet the minimal node size or maximum 
tree depth (Breiman 2001). For this analysis, concerning 
the large sample size of the data, a forest of 1,000 trees 
were grown. The Gini index was used as the split rule 
and a maximum number of splits of ten was used for 
each tree.

This analysis used the randomForestSRC (Ishwaran 
and Kogalur 2020) R package because it could use pro-
portions as predictions from each decision tree. In 
contrast, the more popular R package randomForest 
(Breiman and Cutler 2018) combines binary predictions 
when producing the ensemble, which is less accurate 
(Malley, et al. 2012).

Similar to the conditional probability analysis and 
CART methods of the previous sections, the authors 
trained the final model as an ensemble of three models 

from the prior three years of data. Specifically, 2015, 
2016, 2017 cohorts were used to predict 2018 enrollment 
numbers, and 2016, 2017, 2018 cohorts were used to 
predict 2019 enrollment numbers.

Results
The actual General Chemistry enrollment for fall 2019 
was 396 students, and the random forest predicted 
enrollment to be 394 students, giving an error rate of 
0.8 percent, a substantial improvement over both the 
flowchart method and decision tree method. The actual 
General Chemistry enrollment for fall 2018 was 650, 
and the random forest predicted enrollment to be 658, 
giving an error rate of 1.3 percent, similar to the deci-
sion tree method. A comparison of the performances is 
listed in Table 3 (on page 21).

A nice feature of the random forest approach is that 
it can also identify which variables are most import-

 FIGURE 2 ➤ Decision Tree Trained from 2018 Data
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ant for predicting enrollment (Breiman 2001). These 
variable importance values are found for each variable 
by measuring the difference in prediction accuracy 
between the original data and a randomly scrambled 
version of the variable. The top fifteen most important 
variables are shown in Figure 3. The most important 
variables were prerequisite met date, entry term, fresh-
man status, whether the class had been taken before, 
and high school graduation year. Different from the 
flowchart method and decision tree method, random 
forest used more variables for prediction, as cross 
referenced in Figure 1 (on page 19) and Table 1 (on 
page 15). Although some of the variables were not 
as important as, say the top five in the variable impor-
tance plot of Figure 3 (on page 22), the random forest 
model took a lot of other variables into consideration 
due to its much more complicated structure.

Conclusions and Discussion
This paper aimed to improve upon existing course 
enrollment prediction models by applying two tree-
based algorithms. The authors found that the proposed 
decision tree approach was able to improve upon the 
current state-of-the-art conditional probability analysis 
slightly, and the proposed random forest model was 
able to further improve upon both methods. In Figure 
4, the enrollments over the past few years are visual-
ized. From these statistics, it is clear that the enrollment 
numbers generally were not static, with fall 2019 having 
a much smaller enrollment number than previous years. 
Because of this variability, the three methods predicted 
this change in enrollment to varying degrees. Although 
all three predictions were respectably reasonable com-

pared to an initial prediction based on the one-, two-, 
or three-year average of previous enrollment, both tree-
based methods were more accurate than the conditional 
probability analysis.

The comparison of the three methods’ performance 
is shown in Table 3 (on page 21). The decision tree 
was able to give further insights into the relevance of 
each variable in predicting whether or not a student 
would enroll in General Chemistry. The CART algorithm 
searched through each variable and found the variable 
that was able to create the most homogeneous child 
nodes. The conditional probability analysis split stu-
dents by transfer status, prerequisite met term, whether 
the course is a major prerequisite, and whether the 
students had taken General Chemistry before. Whereas, 
the decision tree method did not consider major pre-
requisite as an important split, it considered SAT com-
prehensive score, high school graduation year, entry 
term, and ethnicity as important variables. The decision 
tree, thus, improved the conditional probability analy-
sis by measuring which variables were able to identify 
more homogenous subgroups through the algorithm. 
Analogous to the decision tree, random forest identi-
fied prerequisite met date, entry term, freshman sta-
tus, whether General Chemistry had been taken before, 
and high school graduation year as the most important 
variables. Random forest also incorporated SAT com-
prehensive score, though to a lesser degree. Due to the 
random forest’s much more complicated model struc-
ture, it captured year-to-year variation and resulted in 
an improved prediction.

These results advanced upon the insights gained 
from the conditional probability analysis. The flowchart 

 TABLE 3 ➤ Actual vs. Predicted Enrollment, Fall 2018 and Fall 2019

Term Actual 
Enrollment

Predicted Enrollment, by Method

Conditional Probability 
Analysis

Classification and 
Regression Tree Random Forest

n Error (%) n Error (%) n Error (%)

Fall 2018 650 627 3.5 655 0.8 658 1.3

Fall 2019 396 312 21.2 335 15.5 393 0.8
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posited several categories that could have influenced 
whether or not a student would enroll in a particular 
course. The decision tree model showed that some of 
the categories presented in the conditional probabil-
ity model either were not necessary or, on the other 
hand, were more important than previously thought. 
In particular, the model showed that, in the presence 
of student academic background, there was no need to 
make a separate distinction for students whose major 
requires General Chemistry as a prerequisite. It also 
showed that prior academic information, especially 
high school graduation year and SAT comprehensive 
score, could influence how soon a student takes General 
Chemistry upon entering the university.

Accurately predicting course enrollment for fu-
ture terms is a critical task for any university. Machine 
learning methods are powerful tools to aid in university 
planning and minimize the unnecessary administrative 
costs associated with allocating additional or fewer seats 
for students than was originally planned. The proposed 
tree-based approaches pinpoint areas of interest for fu-
ture studies. The tree-based algorithms showed that 
prior GPA, age, and high school graduation time are 
useful in course prediction for General Chemistry in 
addition to the previously theorized metrics of student 
performance in university.

Enrollment patterns of other courses may differ 
from that of General Chemistry. The authors’ methods 

 FIGURE 3 ➤ Variable Importance for Random Forest Application
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may analogously be applied to each individual course to 
predict future enrollment. Further research is currently 
under way to explore whether or not the patterns of 
enrollment seen here hold true for other large enroll-
ment courses with hundreds of students per semester, 
especially courses where there are no prerequisites, as 
these courses may be harder to predict.

As presented in Appendix A, Table 4 (on page 24), 
many variables were used in these predictive models 
including potentially sensitive data such as ethnicity, 
disability, and parent education. The authors note that 
the data was completely de-identified before analysis. In 
addition, variables were used only to aid in prediction 
accuracy and not for enhancing nor limiting student 
access to any class.

 FIGURE 4 ➤ Enrollment Numbers Visualized
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 TABLE 4 ➤ Variables Used for Course Enrollment Predictions

Variable Name Variable Description Value(s)/Value Type
Summary Statistics1

Result Low High

University Data

EntryTerm Entry Term Fall, Spring – – –

STDLVL Student Status upon Admission
Freshman, Transfer, 

Readmit, Non-
Degree Seeking

– – –

SMAJOR Student Major 206 Different Majors – – –

Chem_200_Req_Cleared*2 Prerequisite Met Status Yes, No 0.1080 – –

Attempt_1_Period2 Semester of First Enrollment Fall, Spring, Summer – – –

Attempt_1_Grade Final Grade from First Enrollment2
A, A-, B+, B, B-, C+, C, 

C-, D+, D, D-, F, W
– – –

Attempt_2_Period Semester of Second Enrollment2 Fall, Spring, Summer – – –

Attempt_2_Grade
Final Grade from Second 
Enrollment2

A, A-, B+, B, B-, C+, C, 
C-, D+, D, D-, F, W

– – –

Attempt_3_Period Semester of Third Enrollment2 Fall, Spring, Summer – – –

Attempt_3_Grade Final Grade from Third Enrollment2
A, A-, B+, B, B-, C+, C, 

C-, D+, D, D-, F, W
– – –

Date Date Prerequisites Were Fulfilled2 MM-DD-YYYY – – –

Study_Abroad_Ever_Desc* Studied Abroad Yes, No 0.0386 – –

Honors_Desc* Honors Student Yes, No 0.0309 – –

Compact_Desc* Compact Scholar Yes, No 0.0638 – –

FAST_Desc* FAST Program Participant Yes, No 0.0230 – –

Athlete_Desc* Student Athlete Yes, No 0.0177 – –

Summer_Bridge_Desc* EOP Summer Bridge Participant Yes, No 0.0115 – –

Demographic Data

Age_Year Age in Year Integer 18 16 78

URM* Under Represented Minority Yes, No 0.3330 – –

1 For categorical variables, the proportion of positive cases
2 Reference course: General Chemistry (CHEM 200)

 * Indicator Variable with values of 1 (yes) and 0 (no)

Appendix A: Supplemental Reference Material
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 TABLE 4 ➤ Variables Used for Course Enrollment Predictions

Variable Name Variable Description Value(s)/Value Type
Summary Statistics1

Result Low High

Students_of_Color* Student of Color Yes, No 0.0426 – –

Hispanic* Hispanic Yes, No 0.2920 – –

Male* Gender Yes, No 0.4240 – –

FirstGen_NCES_Desc*
First Generation College 
Student Status

Yes, No 0.1880 – –

Parent1_Edu_Desc

Parent2_Edu_Desc

Parent Education (1)

Parent Education (2)

No High School 0.0682 – –

Some High School 0.0595 – –

High School Graduate 0.1590 – –

Some College 0.1510 – –

2-Year College Graduate 0.0630 – –

4-Year College Graduate 0.2550 – –

Postgraduate 0.1290 – –

Unknown – – –

Military_Desc* Military Status Yes, No 0.0833 – –

Disability_Desc* Disability Status Yes, No – – –

Admissions Data

In_Service_Area_Desc* Local Area Admittance Yes, No 0.4580 – –

HS_GradYr High School Graduate Year Integer – – –

CSU_Eligible_Desc* CSU Eligibility Status Yes, No 0.9380 – –

SAT_Comp SAT Composite Score Integer 1140 420 1590

SAT_Math SAT Math Score Integer 570 200 800

SAT_Ver SAT Verbal Score Integer 570 200 800

SAT_CompConv
SAT Composite Score 
(converted from ACT score)

Integer – – –

1 For categorical variables, the proportion of positive cases
2 Reference course: General Chemistry (CHEM 200)

 * Indicator Variable with values of 1 (yes) and 0 (no)
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 TABLE 4 ➤ Variables Used for Course Enrollment Predictions

Variable Name Variable Description Value(s)/Value Type
Summary Statistics1

Result Low High

Incoming_GPA Incoming GPA Decimal 3.59 2.00 4.50

Incoming_Units Incoming Units Taken Integer 21 0 309

HS_MathProficient*
High School Math Proficiency
(as determined by performance 
in CSU ELM exam)

Yes, No 0.8960 – –

Fall_MathProficient*
Fall Matriculation Math Proficiency
(as determined by performance 
in CSU ELM exam)

Yes, No 0.9010 – –

HS_EnglishProficient*
High School English Proficiency
(as determined by performance 
in CSU EPT exam)

Yes, No 0.8990
– –

Fall_EnglishProficient*
Fall Matriculation English Proficiency
(as determined by performance 
in CSU ELM exam)

Yes, No 0.9100
– –

Major*
Student’s major requires 
course2 as prerequisite

Yes, No
– – –

Prereq1* Fulfilled Prerequisites 1 Term Ago Yes, No – – –

Prereq2* Fulfilled Prerequisites 2 Terms Ago Yes, No – – –

Class1* Course2 Taken Last Term Yes, No – – –

Class2* Course2 Taken Two Terms Ago Yes, No – – –

Freshman* Freshman Yes, No 0.5730 – –

Transfer* Transfer Student Yes, No 0.3580 – –

Other*
Undergraduate Readmit or 
Non-Degree Seeking

Yes, No 0.0651
– –

Taken Course2 Taken Yes, No 0.0979 – –

Eligibility_Index CSU Eligibility Index 4128 420 5070

1 For categorical variables, the proportion of positive cases
2 Reference course: General Chemistry (CHEM 200)

 * Indicator Variable with values of 1 (yes) and 0 (no)
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 FIGURE 5 ➤ Flowchart Structure for the Conditional Probability Analysis
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 FIGURE 6 ➤ Classification Tree Analysis: Tree Trained Using 2015 Data
* HSGY = HS_GradYr
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