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On Machine Learning Methods for Propensity Score Matching 
and Weighting in Educational Data Mining Applications

Juanjuan Fan, Joshua Beemer, Xi Yan, and Richard A. Levine

18.1 � Introduction

A well-designed randomized experiment can yield 
unbiased treatment effect because the randomized 
treatment allocation balances the baseline covari-
ates between treated and control subjects. However, 
a randomized trial is not always feasible due to ethi-
cal or practical reasons. The observational study, as 
an alternative to the randomized experiment, can not 
only avoid the possible moral hazard (for example, 
when the treatment of interest is smoking) but also 
be less expensive. However, the observational study 
may produce biased estimates of the treatment effect 
due to treatment of self-selection. Observational stud-
ies are at the heart of data analytics for institutional 
and student success research since students are often 
allowed to decide for themselves whether or not to 
take part in educational interventions.

Propensity score (Rosenbaum & Rubin, 1983), 
defined as the probability of being treated conditional 
on observed covariates, is a useful tool for deriving 

unbiased estimates of the treatment effect based on 
observational study data. Subjects having similar val-
ues of the propensity score share the same distribu-
tion of characteristics (covariates). Therefore, one can 
eliminate the treatment-selection bias in the observa-
tional study by controlling for the propensity score. 
In this chapter, we will evaluate the effectiveness of 
propensity score adjustment by matching and weight-
ing based on propensity score estimates from a few 
different approaches, as detailed below.

Logistic regression (LR) is typically used to esti-
mate propensity scores where treatment status is 
regressed on a set of observed covariates (Austin & 
Stuart, 2015). LR is a strong tool for statistical analysis; 
however, as McCaffrey et al. (2005) points out, large 
numbers of covariates tend to hurt its ability to accu-
rately estimate propensity scores, as a result of multi-
collinearity. Non-linearities and interaction terms can 
also increase the number of covariates and can add 
to overfitting if iterative model-building and variable 
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selection are not performed, further affecting propen-
sity score estimation. Due to the potentially abundant 
demographic and academic preparation variables in 
student success studies, these can be common hur-
dles in analysis. In order to account for large num-
bers of covariates, interactions, and non-linear terms, 
we look to the use of random forests (RFs). We have 
found great success in applying random forest in edu-
cational research and for analyzing student success 
from pedagogical interventions (Spoon et al., 2016; He 
et al., 2018).

Random forest is an ensemble of many decision 
trees and, as a non-parametric method, overcomes 
all the issues of LR that are mentioned above. RF 
has been recognized as an excellent predictive tool 
compared to other machine learning methods, see, 
for example, Fernandez-Delgado et al. (2014), and He 
et al. (2018). In addition, the superior performance of 
random forest can be achieved with little model tun-
ing and/or calibration by the user, making it an ideal 
tool for education researchers when estimating the 
propensity score. In this chapter, we also propose an 
additional ensemble learning method that combines 
predictions from eight popular machine learning 
methods (Hastie et al., 2016; James et al., 2013), includ-
ing logistic regression, random forest, boosting, bag-
ging, k-nearest neighbor, support vector machines 
(SVM), neural network, and naive Bayes. A combina-
tion of these base learner predictions should provide 
a more accurate propensity score estimation than any 
one base learner such as random forest (for discus-
sion, see Beemer et al., 2017).

The goal of this research is threefold. The first 
goal is to compare accuracy of the propensity score 
estimates from three approaches: logistic regres-
sion, random forest, and the ensemble learner (EL). 
The second goal is to compare precision of the treat-
ment effect estimates based on propensity score esti-
mates from these three approaches, in tandem with 
propensity score adjustments from the literature, 
including matching, weighting, variance stabiliza-
tion, and truncation. The first two goals are achieved 
by a large-scale simulation study. The third goal is 
achieved by applying select methods to evaluate the 
effectiveness of an educational intervention from 
San Diego State University.

The chapter is organized as follows. In Section 
18.2, we provide relevant information about pro-
pensity score, random forest, and the proposed 
ensemble learner. In Section 18.3, we present the 
design and results of the simulation study. In 
Section 18.4, we provide a student success case 
study of observational data. We conclude the chap-
ter in Section 18.5 with a summary of results and 
some discussions.

18.2 � Methods

18.2.1 � Propensity Score

Propensity score, ei , is the probability of a subject’s 
assignment to a treatment, while taking into account 
the subject’s characteristics:

	 e P Z Xi i i= ( = 1| ).	 (18.1)

Here Zi is a binary treatment indicator, Zi = 1 if a sub-
ject is in the treatment group and Zi = 0  if a subject is 
in the control group, and Xi is a vector of all observed 
variables other than treatment assignment.

18.2.1.1 � Assumptions for Propensity 
Score-based Methods

Propensity score based methods rely on four primary 
assumptions, as described below.

First, we assume that the treatment does not 
change in application across subjects. We assume 
no spillover effects, so a subject’s treatment is not 
impacted by the treatment application on another 
subject. This assumption is standard in causal 
inference and named SUTVA – the stable unit treat-
ment value assumption. In educational data min-
ing applications, we must ensure interventions, 
instructional designs, intelligent tutoring systems, 
etc. follow a consistent template or rubric. We put 
particular attention on teacher training, if not com-
mon instructor, and intervention system version 
control to satisfy SUTVA. One also must be care-
ful with student collaborations as that may lead to 
spillover effects.

Second, we assume that the outcome observed is the 
potential outcome that would be observed under the 
applied treatment. This assumption is labeled consis-
tency and falls into counterfactual thinking for causal 
inference. A subject may receive any of the treatments 
under study. Each subject thus would realize a poten-
tial outcome for each of the treatment applications. In 
typical educational data mining practice of course, a 
subject is exposed to only one treatment. Consistency 
assumes that under the treatment actually received, 
a subject’s observed outcome is the same as the sub-
ject’s potential outcome. We find this assumption is 
always satisfied in studies of AI in education given 
careful definition of, protocols for, and application of 
the treatment regimes.

Third, we assume that every subject has a non-zero 
probability of receiving each treatment:

	 0 < ( = 1| ) < 1.P Z X 	 (18.2)
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This assumption is called positivity. In typical effi-
cacy studies of AI in education, students have access 
or may receive any of the treatments under consider-
ation, satisfying positivity.

Fourth, we assume that the treatment assignment 
is independent of the outcome conditional on the 
observed covariates:

	 { (1), (0)} |Y Y Z X⊥⊥ ,	 (18.3)

where Y(1) and Y(0) are the possible subject outcomes 
for the treatment and control groups. This assump-
tion is known as the “no unmeasured confounders” 
assumption, meaning all variables that affect the 
outcome and treatment assignment have been mea-
sured. Together, these latter two assumptions estab-
lish if the treatment assignment is strongly ignorable. 
Unfortunately, this fourth assumption cannot be veri-
fied in practice (Zhang et  al., 2012). The usual tactic 
in causal inference is to collect and curate as many 
relevant inputs as possible, and run careful thought 
exercises on potential missing confounders.

For more details and mathematical buildup of these 
assumptions in observational studies, we refer the 
reader to Wilke et al. (2021) and the references therein. 
The bottom line for studies of AI in education is that 
with these assumptions, conditioning on the propen-
sity score supports obtaining unbiased average treat-
ment effect estimates (Rosenbaum & Rubin, 1983).

18.2.1.2 � Propensity Score Matching

The propensity score matching method entails the fol-
lowing steps. First, the propensity score is estimated 
for each subject via a predictive model. Second, start-
ing with a randomly selected treated subject, the sub-
ject is matched to a subject in the control group with the 
nearest propensity score; both the treated and control 
subjects are removed from the pool of future matches. 
This process is continued until all treated subjects are 
matched with a control subject. The final matched set 
will have an equal number of treated to control sub-
jects, with the goal of having a balanced distribution 
for each covariate between the two treatment groups.

18.2.1.3 � Inverse Probability of Treatment Weighting

Austin and Stuart (2015) review inverse probability of 
treatment weighting, variance stabilization, and trun-
cation of weights as ways to better estimate treatment 
effects in observational studies. These methods give 
an educational researcher alternatives to propensity 
score matching, while still accounting for observed 
covariates in the study. This section will walk-through 
the three propensity score weighting methods.

Inverse probability of treatment weighting (IPTW) 
adjusts the underrepresented and overrepresented 
subjects within the control and treatment groups by 
assigning weights:

	 w
Z
e

Z
e

i
i

i
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=

1
1

� �
�

, 	 (18.4)

where Zi and ei  are the treatment indicator and pro-
pensity score (i n= 1, ,… , for n observations), respec-
tively. IPTW gives higher weights to those in the 
treatment group with low propensity scores and those 
in the control group with high propensity scores, 
giving a more accurate estimation of the treatment 
effect (Rosenbaum, 1987). We propose to use IPTW 
in combination with regression models, as referenced 
in Austin and Stuart (2015), to improve estimation of 
causal treatment effects compared to propensity score 
matching.

When the propensity scores are close to zero in 
the treatment group and close to one in the control 
group, IPTW will assign a large weight to those sub-
jects. Thus, a small group of subjects may carry a 
large proportion of the propensity score weight lead-
ing to potentially poor treatment effect estimation. 
To counter the increase in variability, we stabilize the 
weights by multiplying the treatment indicator, Zi, by 
the marginal probability of treatment, Pr Z( = 1), and 
multiplying the control indicator, 1−Zi, by Pr Z( = 0) 
(Robins et al., 2000). The adjusted weight is
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Lee et al. (2010) propose trimming or truncating the 
weights assigned by IPTW, again to prevent extreme 
weights from being assigned when the propensity 
scores are close to zero or one. The truncation is done 
by designating a minimum and maximum threshold, 
and if weights exceed the threshold, they are set to 
that threshold (Cole & Hernan, 2008; Lee et al., 2010).

18.2.2 � Random Forest

Random forest uses bootstrap samples as training 
data to grow individual trees and then combines pre-
dictions from all trees by model averaging. Figure 18.1 
presents an illustrative decision tree for presentation 
of the key terminology and concepts. This tree classi-
fies students based on whether they went to a success 
program or not in an introductory statistics course. A 
tree consists of the root node (oval) and internal nodes 
(rectangles), each characterized by decision rules by 
which students are sent down the tree either to the 
left or to the right. For example, the root node splits 
students according to performance on a beginning 
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of semester math readiness assessment (Quiz 0). 
Students scoring below 0.779 are sent left down the 
tree, while students scoring at least 0.779 on the assess-
ment are sent to the right down the tree. In this split, 
the root node is called the “parent,” and the two inter-
nal nodes to which students may be sent are called the 
“children.” The students continue to progress down 
the tree in this way until reaching a terminal node, 
the circles in Figure 18.1. For illustration purposes, in 
each terminal node, we show the number of students 
and the percentage of students attending the success 
program (treated).

At each split of a tree, a subset of covariates are 
chosen randomly. All the splitting rules based on 
these variables are assessed. A decision rule is cho-
sen to split the data from this set of splitting rules 
according to a specified optimization criterion (see 
more on this below). Each split within a tree is binary 
and leads to another split or terminal node. The 
tree continues to grow until the terminal nodes are 
homogeneous, a preset tree depth is met, or a mini-
mum number of observations is reached in a termi-
nal node. For random forest, this process is repeated 
to grow many trees, thus creating a forest of decision 

trees. As an additional randomization element to 
construct a forest, each tree is grown on data ran-
domly sampled with replacement from the original 
dataset. This bootstrap sample is the same size as 
the original dataset, mimicking data replication to 
allow for variety among the trees (decision rules) in 
the forest.

For each tree, the response variable (outcome/out-
put) is typically predicted as a majority vote or aver-
age, for classification or regression respectively, based 
on the observations in each terminal node (Breiman, 
2001). However, Malley et al. (2012) found that using 
the average outcome, as implemented in our study, 
outperformed the majority vote for classification 
problems. For the forest, the predicted values from 
each tree are averaged across all trees. Unlike logistic 
regression, random forest is unaffected by monotonic 
transformations of input variables, accommodates 
interactions among input variables through the recur-
sive bisecting of the data, and reduces overfitting by 
taking bootstrap samples for growing each tree (Lee 
et al., 2010). A useful feature of random forest is the so-
called out-of-bag (OOB) sample, which are the obser-
vations not included in the bootstrap sample and can 

Quiz 0 < 0.779

HS GPA < 3.885

URM

Age >= 18.46

73; 21% 30; 67%

HS GPA < 3.754

FTF

172; 59% 21; 76%

31; 71%

31; 77%

SAT Math < 575

298;63% HW1 < 0.945

45; 61% 277; 76%

FIGURE 18.1
Illustrative decision tree to exposit the role of the root node (oval), internal nodes (rectangles), and terminal nodes (circles), and the deci-
sion rule determining splits and progression of observations down a tree. This graphic is of a classification tree with outcome (output) 
being treatment assignment in an introductory statistics course. The variables (inputs) on which the tree is grown are beginning of 
semester math readiness (Quiz 0), high school grade point average (GPA), SAT math score, underrepresented minority status (URM), 
student age, identification as a first-time freshman (FTF), and score on the first homework of the semester (HW1).
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be used as a built-in validation sample to assess pre-
diction accuracy.

For propensity score estimation, the response vari-
able we intend to predict is the treatment assignment. 
The best cut point for each node is determined by 
maximizing the reduction in the within-node impu-
rity between the parent node and children nodes. In 
this project, we utilize the Gini index–based splitting 
criterion to evaluate each candidate split (Breiman 
et  al., 1984). For binary response variable, the Gini 
index of node t can be written as follows:

	 i t p t p t( ) = 1 { (1| )} { (0| )}2 2− − ,	 (18.6)

where p t(0| ) and p t(1| ) are the proportion of treated 
and untreated subjects in the node t. Smaller values of 
i t( ) indicate purer nodes with respect to the response. 
The goodness-of-split criterion ∆i s t( , ) is defined as 
follows:

	 �i s t i t p i t p i tL L R R( , ) = ( ) { ( ) ( )}� � ,	 (18.7)

where tL  and tR are the descendants of node t split 
by ss , and the weights, pL  and pR , are the proportion 
of subjects in node t that are partitioned into the left 
child node tL  and right child node tR, respectively. 
This splitting criterion shows the impurity difference 
between the parent node and two weighted child 
nodes, and the best split is the one having the largest 
∆i s t( , ).

After all trees are constructed, information pro-
vided by the terminal nodes is used to estimate the 
propensity score for each observation in the dataset. 
Observations ending up in the same terminal node 
have the same estimated propensity score, which is 
equal to the percentage of treated subjects in the node. 
The propensity score estimate for each subject based 
on the random forest is the average propensity score 
over the classification trees in the forest. In this chap-
ter, we grow forests of 500 trees.

18.2.3 � Ensemble Learning

Random forest in itself is an ensemble learner as we 
are making predictions across a set of trees in the for-
est. More generally, ensemble learning entails fitting 
multiple individual learners to the data, and combin-
ing predictions from these individual learners into an 
ensemble prediction. The idea of an ensemble learner 
is as follows. Using cross-validation and looping over 
the data, a predicted value is obtained for each observa-
tion based on each individual learner. Wolpert (1992), 
Breiman (1996), and LeBlanc and Tibshirani (1996) 
propose that the ensemble may combine the predic-
tions from individual or base learners using a ridge 

regression, the so-called meta-learner. Ridge regres-
sion uses a penalty function to minimize coefficients 
of covariates that are weak predictors of the outcome 
(James et al., 2013, Chapter 6). In this case, the predic-
tions from the individual learners are the covariates 
and the coefficients act as the weights, which become 
the ensemble learner via linear combination.

We propose a modified version of the ensem-
ble learner presented in Beemer et  al. (2017). The 
ensemble learning method starts with K-fold cross-
validation: randomly split the data into K subsets of 
approximately equal sizes, removing one subset and 
training the base learners on the remaining subsets. 
The trained base learners are then used to make pre-
dictions for the subset that was removed. This “leave-
one-out” method is repeated using the next subset 
until predictions are made for all observations. The 
predictions from base learners are then stacked, with 
predictions from each base learner forming a column. 
But instead of using a ridge regression to weigh the 
predictions as described above, a random forest is 
built to regress the true outcome against the predic-
tions. Random forest has proven to be a reliable meta-
learner in medical research (Wang et al., 2019), and a 
good alternative to regression methods in educational 
research (Spoon et al., 2016; He et al., 2018). We expect 
this modified ensemble learner to achieve strong pre-
dictive performance.

Algorithm 1: Ensemble Learner

	 1.	 Identify L base learners.
	 2.	Randomly partition data into k subsets of 

approximately equal sizes.
	 3.	for k K= 1, ,…  do

	 4.	  �   Leave the kth subset out as test set, remain-
ing subsets are the training set.

	 5.	  �   for j L= 1, ,…  do

	 6.	         Train the jth base learner on training set.
	 7.	         �Predict test set using trained base learner.
	 8.	Stack predictions from each base learner as a 

column in a data frame.
	 9.	Build a random forest using the stacked pre-

dictions from the base learners as inputs.

The algorithm for the ensemble learner is pre-
sented in Algorithm 1. The ensemble will have the 
ability to combine the predictions from L machine 
learning methods. In our software, we provide the 
user with eight base learners: logistic regression, 
random forest, boosting, bagging, k-nearest neigh-
bor, support vector machines, neural network, and 
naive Bayes.
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All codes performed in the project are developed 
in the statistical freeware R. Random forest is con-
structed through the R package PartyKit with modi-
fications. The R package MatchIt is used to obtain 
the samples matched by propensity scores estimated 
using LR, RF, and our custom-made ensemble learner. 
The R software we wrote for the ensemble learner is 
publicly available at our GitHub depository (Beemer, 
2021).

18.3 � Simulation Study

In this section we present a simulation study to com-
pare the propensity score estimates from logistic 
regression, random forest, and the ensemble learner. 
The ultimate goal is to evaluate the precision in treat-
ment effect estimates when using different modeling 
approaches for PS estimation, combined with various 
propensity score adjustment methods. We start with 
data generation for the observational study.

18.3.1 � Data Generation

We generate data in the following order.

18.3.1.1 � Generating Covariates (X)

Eight covariates (X1–X8 ) were generated independent 
of specific probability distributions. Variable X1 was 
generated as a binary variable from a Bernoulli distri-
bution with probability of success at p = 0.5. Variable 
X2  was generated as a nominal variable with five cat-
egories (A, B, C, D, E), with each category at differ-
ent likelihoods to occur, (10%, 20%, 30%, 20%, 20%). 
Variables X3  and X4  were generated independent of a 
discrete uniform distribution from 0 to 1 with incre-
ments of 0.2, and treated as ordinal variables with five 
levels (0.2, 0.4, 0.6, 0.8, 1.0). The last four covariates (X5

–X8 ) were designed to mimic continuous variables 
and were simulated by discrete uniform distributions 
from 0 to 1 with increments of 0.02.

18.3.1.2 � Generating Treatment 
Assignment Indicator (Z)

Following Setoguchi et  al. (2008), the true propen-
sity score, or the probability of treatment assignment 
given covariates, is assumed to follow the logistic 
regression model:

	 P Z X
e f X( = 1| ) =
1

1
.( )� �� 	 (18.8)

Setoguchi et  al. (2008) uses seven models in their 
study, in which the function f ( )⋅  has varying degrees 
of additivity and linearity, with non-additivity and 
non-linearity comprising two-way interactions and 
quadratic terms. In this chapter, we consider four 
models from Setoguchi et al. (2008) and add one addi-
tional model (model E) which contains three-way 
interactions and non-linearity terms other than the 
quadratic form. The five treatment-selection models 
are given as follows:

	 A.	Additivity and linearity (main effects only)

	
P Z X X X X

X X X X

( = 1| ) = (1 [ ( 0 1 1 2 2 3 3

4 4 5 5 6 6 7 7 8
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	 B.	Moderate non-linearity (three quadratic terms)

P Z X X X X

X X X X

( = 1| ) = (1 [ ( 0 1 1 2 2 3 3

4 4 5 5 6 6 7 7 8
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� (18.10)

	 C.	Mild non-additivity (four two-way interaction 
terms)

	

P Z X X X X

X X X X

( = 1| ) = (1 [ ( 10 1 2 2 3 3

4 4 5 5 6 6 7 7 8
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exp � � � �

� � � � � XX

X X X X X X X X

8

9 3 4 10 4 5 11 5 6 12 6 7
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� (18.11)

	 D.	Moderate non-additivity and non-linearity (ten 
two-way interaction terms and three quadratic 
terms)

	

P Z X X X X

X X X X

( = 1| ) = (1 [ ( 10 1 2 2 3 3

4 4 5 5 6 6 7 7 8

� � � � �

� � � � �

exp � � � �

� � � � � XX X

X X X X X X

X X X X
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2
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2
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2

12 3 4 13 4 5
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� (18.12)

	 E.	Severe non-additivity and non-linearity (six 
two-way interaction terms and four three-way 
interaction terms; one quadratic term, one cubic 
polynomial, and one square root term)
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P Z X X X X

X X X X

( = 1| ) = (1 [ ( 10 1 2 2 3 3

4 4 5 5 6 6 7 7 8

� � � � �

� � � � �

exp � � � �

� � � � � XX

X X X X X

X X X X X X

8

9 4
2

10 6
2

11 8 12 3 4

13 4 5 14 5 6 15 6 7

16

� � � �

� � �

�

� � � �

� � �

� XX X X X X X X

X X X X X X X X X

7 8 17 3 8 18 3 5 7

19 4 6 8 20 3 4 5 21 6 7 8
1)])

� �

� � � �

� �

� � � ..

 

� (18.13)

The true propensity score was used as the parameter, 
p, in a Bernoulli distribution to generate the treatment 
assignment for each subject in the dataset. In our 
experience with educational interventions, the pro-
portion of students in the treatment group is typically 
within the 20–30% range. The coefficients (shown in 
Table 18.1) in the treatment-selection models were 
chosen so that the probability of being allocated to 
treatment was about 25%.

18.3.1.3 � Generating Outcome (Y)

Based on covariates (X X1 8− ) and treatment assign-
ment indicator (Z), the continuous outcome variable, 
Y, was generated as follows:

Model 1

	
Y Z X X X X X

X X X

= 00 0 1 1 2 2 3 3 4 4 5 5

6 6 7 7 8 8
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� � � �

� � � � � �
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� (18.14)

Model 2
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X X X X X
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� (18.15)

where ε ∼ N(0,1). In Model 1, a simple linear associa-
tion is assumed between predictors and the outcome, 
while Model 2 involves several non-linear terms and 
two-way interactions, in order to examine the per-
formance of different methods for treatment effect 
estimation in a more complex data structure. The 
true treatment effect ( )0α  was fixed at 1.5 for both 
outcome models. The other coefficients in the mod-
els( , )1 8 00� � ��  were set to 0.5, 0.3, 0.7, 0.6, 0.1, –1.2, –0.5, 
–1, and 0.5, respectively.

With five models (A–E) for treatment assignment, 
combined with two models (1–2) for the outcome, a 
total of ten models were used in our simulation study. 
These models are denoted as models A–E and A¢–
E¢ hereafter. For example, model A assumes perfect 
additivity and linearity for both the treatment assign-
ment model and the outcome model, while model E¢ 
assumes most severe non-additivity and non-linearity 
for both the treatment assignment and outcome mod-
els. For each simulation scenario, 100 datasets of size 
n = 500 were simulated.

18.3.2 � Simulation Study Results

Propensity scores were predicted from logistic regres-
sion, random forest, and the ensemble learner for the 
true propensity score models A–E, and from these pre-
dictions a mean squared error (MSE) was computed. 
Table 18.2 shows that the ensemble learner performs the 
best, and random forest performs the second best, for 
every treatment assignment model. Logistic regression 
underperforms even for Model A, which is a logistic 
regression model with perfect additivity and linear-
ity. The excellent performance of the ensemble learner, 
especially for more complex models, supports the idea 
of using an ensemble learner over logistic regression for 
propensity score matching and weighting techniques.

Table 18.3 presents bias and mean squared error 
(MSE) for the estimated treatment effect using 

TABLE 18.1

Coefficients Used in the Data Generation Models

Model β0  β1 β2 β3  β4  β5 β6  β7  β8  β9 β10  

A –0.5 –0.5 1.2 –1.0 –0.62 –0.7 –0.4 0.6 0.2 • • 
B –0.5 –0.5 –1.2 –1.2 –0.72 0.7 0.4 0.6 0.2 0.3 –0.4 
C –0.5 –0.5 –1.2 –1.2 –0.72 0.7 0.4 0.6 0.2 0.3 –0.4 
D –0.5 –0.5 –1.2 –1.2 –0.62 0.7 0.4 0.6 0.2 0.3 –0.4 
E –0.5 –0.5 –1.2 –1.2 –0.72 0.7 0.4 0.6 0.2 0.3 –0.4 
Model β11  β12  β13  β14  β15  β16  β17  β18  β19  β20  β21  
A • • • • • • • • • • • 
B 1.1 • • • • • • • • • • 
C 1.1 0.46 • • • • • • • • • 
D 1.1 –0.2 0.42 –0.8 0.9 –1 0.32 –0.45 0.36 –0.47 0.35 
E 1.1 –0.2 0.42 –0.8 0.9 –1 –0.32 –0.45 –0.36 0.47 0.35 
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propensity score matching and weighting, includ-
ing four different weighting schemes (inverse prob-
ability of treatment weighting, variance stabilization 
of weights, weight truncation, variance stabilization 
with truncation), as detailed in Section 18.2.1. The 
methods for propensity score estimation include 
logistic regression, random forest, and ensemble 
learner. These results offer comparisons among mod-
els (logistic regression, random forest, and ensemble 
learning) and between matching and weighting.

It can be seen from Table 18.3 that the best perfor-
mance, as signified by the smallest MSE, is almost 
always by the ensemble learner, especially when the 
ensemble learner is combined with propensity score 
weighting using variance stabilization and/or trunca-
tion of weights. Random forest, combined with propen-
sity score weighting, also performs well. Comparing 
propensity score matching and weighting, weighting 
appears to be the clear winner, especially when using 
variance stabilization and/or truncation of weights.

18.4 � Students’ Success Case Study

In a “State of the CSU” address, Dr. Timothy White, the 
former Chancellor of the California State University 
system, states “The California State University is key to 
California’s brightest and most hopeful future, open-
ing the door to educational opportunities for all and 
transforming the lives of students and their families.” 
With this mandate, San Diego State University offers 
many student success interventions such as supple-
mental instruction (see Guarcello et al., 2017, and the 
references therein), which is offered to students cur-
rently enrolled, or even pre-enrollment interventions 
that aim to help students to attend SDSU. We look at 
one such student success intervention that is offered to 
students who are from underprivileged communities 
and are given a path that optimally could afford them 
the opportunity for entrance into higher education.

Table 18.4 presents a comparison of students sup-
ported by the student success intervention and their 
peers not assisted by the intervention. This snapshot 
of a few student background characteristics shows that 

those in the intervention have a higher rate of being first-
generation college students (i.e., first in their immediate 
family to go to college) and underrepresented minorities 
(an ethnicity categorization defined by the California 
State University System). They have lower mean SAT 
scores, slightly lower mean high school grade point aver-
age (GPA), and tend to earn, and transfer, fewer college-
level course units than their peers at the university.

Table 18.5 investigates the balance in the demo-
graphic and background variables before and after 
matching, between treated and control groups. Before 
propensity score matching, the standardized mean 
difference (SMD), defined as the difference between 
the two sample means divided by the pooled standard 
deviation, is large for all but two variables in Table 18.5, 
using a value of SMD below 20 for balanced samples 
(Austin, 2009; Hillis et al., 2021). After propensity score 
matching, the standardized mean difference decreases 
for all covariates. Matching in this study does a very 
good job of balancing the background characteristics 
between the treated and control groups, with all SMD 
values below 20 after matching.

To evaluate the success of the intervention, we 
examine the effect of the intervention on the student 
GPA at the end of their second semester at the univer-
sity, specifically the GPA for courses taken on campus. 
Table 18.6 presents the estimated treatment effect of 
the intervention, and the associated p-value and 95% 
confidence interval. Based on the results using pro-
pensity score weighting with variance stabilization 
and truncation, those students who participated in 
the student success intervention had on average an 
increase of 0.053 (with a 95% confidence interval of 
–0.024 to 0.130) in their end of second semester GPA 
compared to those students who did not participate in 
the intervention, accounting for all other possible fac-
tors. The results based on propensity score matching 
are similar to those from weighting, and the ensemble 
learner was used for propensity score estimation.

We note that the treatment effect confidence inter-
vals cover zero, suggesting a failed student success 
intervention. However, since students provided with 
the intervention are perceived to be at a distinct aca-
demic disadvantage due to their socioeconomic back-
ground, an “on par” result is a success. These results 
show that by participating in the student success 
intervention, program students were able to match 
their peers in GPA at the end of their second semester.

18.5 � Discussion

Evaluations and assessments of student success 
interventions often require observational studies. 

TABLE 18.2

Mean Squared Error (MSE) for the Propensity Score 
Estimates by Logistic Regression, Random Forest, 
and Ensemble Learner for Models A–E (n = 500)

A B C D E 

LR 0.041 0.052 0.054 0.048 0.047 
RF 0.039 0.048 0.049 0.044 0.044 
EL 0.018 0.017 0.017 0.017 0.018 
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Propensity score–based adjustments are powerful 
tools to derive unbiased estimates of the treatment 
effect from observational studies. In this chapter, we 
review two methods for propensity score estimation, 
including logistic regression and random forest, and 
propose our own custom-made ensemble learner com-
bining prediction results from eight popular machine 
learning methods. In addition, we discuss propensity 
score matching and inverse probability of treatment 
weighting, including variance stabilization and trun-
cation of weights, as means to improve performance 
of propensity score weighting.

A large-scale simulation study is conducted to com-
pare the three modeling approaches for propensity 
score estimation: LR, RF, and EL; and to compare per-
formance of propensity score matching and weight-
ing in conjunction with the modeling approaches. 
The simulation results show that the ensemble 
learner provides the most accurate estimates of the 

propensity score under all model configurations, fol-
lowed by random forest as the second best performer. 
In terms of accuracy of treatment effect estimation, 
the ensemble learner combined with propensity score 
weighting, incorporating variance stabilization and 
truncation, is an overall top performer. Random for-
est combined with propensity score weighting also 
performs reasonably well. Between propensity score 
matching and weighting, we recommend propensity 
score weighting using variable stabilization and trun-
cation of weights.

The ensemble learner based propensity score match-
ing and weighting methods are applied to a student 
success intervention at San Diego State University for 
underserved students before enrollment at SDSU. The 
ensemble learner–based propensity score matching 
is able to largely eliminate the imbalance in student 
background variables between students in the inter-
vention and their peers not in the intervention. A study 
of the effect of intervention, using propensity score 
matching and weighting, shows that the intervention 
successfully removes academic disadvantage among 
participates, a consequence of their lower socioeco-
nomic status and less prepared academic background, 
so that the participants are able to perform as well as 
the general student population at SDSU by the end of 
their second semester at the university.

In terms of performance comparisons of existing 
machine learning methods, Fernandez-Delgado et al. 
(2014) performed a broader study of 179 classifiers 
from 17 machine learning families and result found 
that random forest performed the best overall, fol-
lowed by boosted trees, neural network, and SVM. 
In comparison, naive Bayes, logistic regression, and 
decision tree do not perform as well. Considering pro-
pensity score weighting specifically, Lee et al. (2010) 
conducted a well-cited simulation study comparing 
the performance of logistic regression, decision tree, 
bagged and boosted trees, and random forest. Their 
recommendation was to use boosted trees and ran-
dom forest for their consistent superior performance. 
More recently, Cannas and Arpino (2019) extended the 
simulation study by Lee et al. to include both propen-
sity score matching and weighting, while adding two 
new machine learning methods for comparison: neu-
ral network and naive Bayes. They also found random 

TABLE 18.4

Summary of Student Characteristics for Treatment 
and Control Groups

Control Treated 

First generation 15.8% 21.0% 
Underrepresented minority 32.4% 62.9% 
SAT score 1209.1 (156.3) 1145.3 (85.1) 
High school GPA 3.7 (0.3) 3.5 (0.3) 
Transfer units 22.3 (26.3) 10.8 (11.2)

Mean and (standard deviation) reported for continuous vari-
ables, and percentage reported for categorical variables.

TABLE 18.5

Standardized Mean Difference before and after Matching

Covariate Before After 

Age 62.8 6.7 
Gender 10.4 3.2 
SAT score 50.8 7.3 
High school GPA 32.8 18.4 
Incoming units 57.1 8.3 
First Generation 13.3 2.6 
Underrepresented minority 64.1 7.7 
Hispanic 72.2 15.2 

TABLE 18.6

Student Success Treatment Effect, p-Value, and 95% Confidence Interval from Matching 
and Variance Stabilization with Truncation

Method Treatment Effect p-Value 95% Confidence Interval 

Matching 0.063 0.196 −0.033, 0.158
Variance stabilization with truncation 0.053 0.179 −0.024, 0.130 
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forest to have the best overall and most consistent 
performance, followed by neural network and logis-
tic regression. In summary, random forest, boosted 
trees, and neural network all seem to perform well 
in general, with boosted trees and neural network 
requiring more user input and calibration. For the less 
experienced user of machine learning methods, with-
out having to code their own ensemble or performing 
extensive calibration, we recommend random forest 
for propensity score estimation for its superior predic-
tive power and relative ease of implementation.

We used a sample size of 500 with eight features in 
simulations presented in this chapter. For the simula-
tion studies presented in Lee et al. (2010) and Cannas 
and Arpino (2019), sample sizes of 500, 1,000, and 2,000 
were considered with ten features. These sample sizes 
and number of features were selected as they were 
similar to the observational study data under con-
sideration and the recommended machine learning 
methods do pretty well under these configurations. 
Lee et al. point out that as the sample size increases, 
the comparative performance of the machine learning 
algorithms did not change, while the accuracy of treat-
ment effect estimates improved for all methods. This 
generally agrees with our own experiences, see, for 
example, Autenrieth et al. (2021), in which an in-depth 
simulation study was provided. In addition, machine 
learning methods can generally perform well over a 
wide range of sample sizes and feature space.

It is important to point out that no method performs 
the best for all situations. Traditional methods such 
as logistic regression perform well when the models 
can be correctly specified, while machine learning 
methods such as random forest and ensemble learner 
have a distinct advantage with complex data structure 
since they are non-parametric in nature and hence 
more flexible. This trend can be seen from the simu-
lation results presented in Table 18.3. Since one does 
not know the true model formats in the real world, we 
recommend that different methods should be evalu-
ated for the specific dataset at hand with performance 
judged based on cross-validation or a test sample.

Quantification of uncertainty with machine learn-
ing methods is more complex and much less routinely 
performed compared to classical regression methods. 
However, there have been some recent advances on 
statistical inferences for random forests, interested 
readers are referred to Mentch and Hooker (2016), 
Wager and Athey (2018), Athey et  al. (2019), Lu and 
Hardin (2021), and references therein. In the context 
of propensity score weighting and matching, machine 
learning methods are used only to obtain more accu-
rate estimates of the propensity score. Since the ulti-
mate goal is to reduce or eliminate the selection bias 
from the observational study, it is crucial that the 

predicted propensity scores can help achieve well-
balanced covariates between treatment groups.
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